Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
2.
preprints.org; 2022.
Preprint em Inglês | PREPRINT-PREPRINTS.ORG | ID: ppzbmed-10.20944.preprints202211.0516.v1

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the development of direct-acting antiviral drugs due to the coronavirus disease 2019 (COVID-19) pandemic. The main protease of SARS-CoV-2 is a crucial enzyme that breaks down polyproteins synthesized from the viral RNA, making it a validated target for the development of SARS-CoV-2 therapeutics. New chemical phenotypes are frequently discovered in natural goods. In the current study, we used a fluorogenic assay to test a variety of natural products for their ability to inhibit SARS-CoV-2 Mpro. Several compounds were discovered to inhibit the Mpro at low micromolar concentrations. It was possible to crystallize robinetin together with SARS-CoV-2 Mpro, and the X-ray structure revealed covalent interaction with the protease's catalytic Cys145 site. Selected potent molecules also exhibited antiviral properties without cytotoxicity. Some of these powerful inhibitors might be utilized as lead compounds for COVID-19 research.


Assuntos
COVID-19 , Infecções por Coronavirus , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos
3.
biorxiv; 2022.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2022.03.30.486313

RESUMO

The papain-like protease (PLpro) in coronavirus is one of key cysteine proteases responsible for the proteolytic processing of viral polyproteins, and plays an important role in dysregulation of host immune response. PLpro is a promising therapeutic target with a major challenge in inhibitor design due to the restricted S1/S2 sites for two consecutive glycine of substrates. Here we reported the discovery of two activators of the SARS-CoV-2 PLpro from a biochemical screening, and the identification of the unique residue, C270, as an allosteric and covalent regulation site for the activators. This site was also specifically modified by glutathione oxidized, resulting in the S-glutathionylation and activation of the protease. Furthermore, one compound was found to allosterically inhibit the protease by covalent binding to this crucial site. Together, these results elucidated an unrevealed molecular mechanism for allosteric modulation of the protease's activity, and provided a new strategy for discovery of allosteric inhibitors of the SARS-CoV-2 PLpro.

4.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.04.13.038687

RESUMO

Human infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause coronavirus disease 19 (COVID-19) and there is currently no cure. The 3C-like protease (3CLpro), a highly conserved protease indispensable for replication of coronaviruses, is a promising target for development of broad-spectrum antiviral drugs. To advance the speed of drug discovery and development, we investigated the inhibition of SARS-CoV-2 3CLpro by natural products derived from Chinese traditional medicines. Baicalin and baicalein were identified as the first non-covalent, non-peptidomimetic inhibitors of SARS-CoV-2 3CLpro and exhibited potent antiviral activities in a cell-based system. Remarkably, the binding mode of baicalein with SARS-CoV-2 3CLpro determined by X-ray protein crystallography is distinctly different from those of known inhibitors. Baicalein is perfectly ensconced in the core of the substrate-binding pocket by interacting with two catalytic residues, the crucial S1/S2 subsites and the oxyanion loop, acting as a "shield" in front of the catalytic dyad to prevent the peptide substrate approaching the active site. The simple chemical structure, unique mode of action, and potent antiviral activities in vitro, coupled with the favorable safety data from clinical trials, emphasize that baicalein provides a great opportunity for the development of critically needed anti-coronaviral drugs.


Assuntos
Infecções por Coronavirus , COVID-19
5.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.04.08.032763

RESUMO

The pandemic of Corona Virus Disease 2019 (COVID-19) caused by SARS-CoV-2 has become a global crisis. The replication of SARS-CoV-2 requires the viral RNA-dependent RNA polymerase (RdRp), a direct target of the antiviral drug, Remdesivir. Here we report the structure of the SARS-CoV-2 RdRp either in the apo form or in complex with a 50-base template-primer RNA and Remdesivir at a resolution range of 2.5-2.8 [A]. The complex structure reveals that the partial double-stranded RNA template is inserted into the central channel of the RdRp where Remdesivir is incorporated into the first replicated base pair and terminates the chain elongation. Our structures provide critical insights into the working mechanism of viral RNA replication and a rational template for drug design to combat the viral infection.


Assuntos
COVID-19 , Viroses
6.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.03.25.996348

RESUMO

SARS-CoV-2 is the etiological agent responsible for the COVID-19 outbreak in Wuhan. Specific antiviral drug are urgently needed to treat COVID-19 infections. The main protease (Mpro) of SARS-CoV-2 is a key CoV enzyme that plays a pivotal role in mediating viral replication and transcription, which makes it an attractive drug target. In an effort to rapidly discover lead compounds targeting Mpro, two compounds (11a and 11b) were designed and synthesized, both of which exhibited excellent inhibitory activity with an IC50 value of 0.05 M and 0.04 M respectively. Significantly, both compounds exhibited potent anti-SARS-CoV-2 infection activity in a cell-based assay with an EC50 value of 0.42 M and 0.33 M, respectively. The X-ray crystal structures of SARS-CoV-2 Mpro in complex with 11a and 11b were determined at 1.5 [A] resolution, respectively. The crystal structures showed that 11a and 11b are covalent inhibitors, the aldehyde groups of which are bound covalently to Cys145 of Mpro. Both compounds showed good PK properties in vivo, and 11a also exhibited low toxicity which is promising drug leads with clinical potential that merits further studies.


Assuntos
COVID-19 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA